Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: Research Program

The mixed-effects models

Mixed-effects models are statistical models with both fixed effects and random effects. They are well-adapted to situations where repeated measurements are made on the same individual/statistical unit.

Consider first a single subject i of the population. Let yi=(yij,1jni) be the vector of observations for this subject. The model that describes the observations yi is assumed to be a parametric probabilistic model: let pY(yi;ψi) be the probability distribution of yi, where ψi is a vector of parameters.

In a population framework, the vector of parameters ψi is assumed to be drawn from a population distribution pΨ(ψi;θ) where θ is a vector of population parameters.

Then, the probabilistic model is the joint probability distribution

To define a model thus consists in defining precisely these two terms.

In most applications, the observed data yi are continuous longitudinal data. We then assume the following representation for yi:

Here, yij is the observation obtained from subject i at time tij. The residual errors (εij) are assumed to be standardized random variables (mean zero and variance 1). The residual error model is represented by function g in model (2).

Function f is usually the solution to a system of ordinary differential equations (pharmacokinetic/pharmacodynamic models, etc.) or a system of partial differential equations (tumor growth, respiratory system, etc.). This component is a fundamental component of the model since it defines the prediction of the observed kinetics for a given set of parameters.

The vector of individual parameters ψi is usually function of a vector of population parameters ψ pop , a vector of random effects ηi𝒩(0,Ω), a vector of individual covariates ci (weight, age, gender, ...) and some fixed effects β.

The joint model of y and ψ depends then on a vector of parameters θ=(ψ pop ,β,Ω).